제목: Hydraulic Pump Test System

성명 : 윤정웅 직책 : 대리

회사 : ㈜이노템즈 사용한 NI제품명

PCI-GPIB, cFP-AI-100, cFP-AO-200

SCXI-1125, SCXI-1124 LabVIEW8.0, Report Generation Tool

요약

Hydraulic Pump Test System은 가정용에서 농업용, 공업용에 이르기까지 각 분야에 사용되는 펌프의 효율 및 여러 측정기준 값들을 검사하는 시험기이다.

각 펌프 테스트 라인은 기성품으로 제작되는 펌프가 아닌 소비자의 정해진 Spec값에 대한 테스트를 위한 목적으로 펌프에 연결되는 연결파이프의 구경 별로 11개의 라인이 존재하며, 각 라인은 성능에 대한 측정을 목적으로 한 데이터 검출 센서가 통합 설치된 라인이다.

펌프의 성능은 소비자의 제품 신뢰성과 직결되므로 각 Spec값에 대한 정확한 측정 및 특성이 중요한데, 이러한 펌프의 특성은 구체적으로 정해진 유량 점에 대한 흡입압력, 토출 압력, 전압, 전류, 전력, 온도, rpm, Torque값 등이 있다.

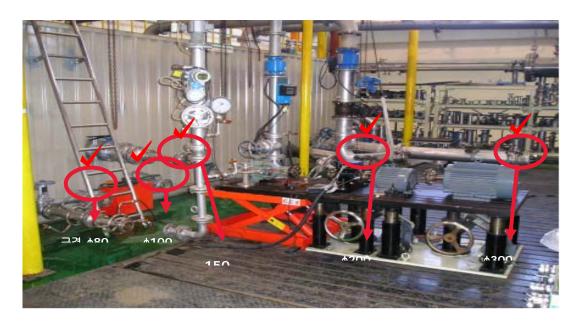
위에 열거한 전기적 출력 특성은 SCXI-1338 및 cFP-AI-110을 이용하여 계측하였고, 펌프의모터에 사용되는 전압, 전류, 전력 및 rpm, Torque는 GPIB 통신을 이용하여 계측하였다. 각펌프라인에는 전동밸브를 설치하고 이들의 Open/Close 정도를 SCXI-1124 및 cFP-AO-200에 연결하여 LabVIEW로 짜여진 프로그램에 의해 자동제어 할 수 있도록 하였다.

Hydraulic Pump Test System은 기존의 검사방식과는 달리 3개 라인의 검사가 동시에 이루어 질 수 있으며, 이로써 수동으로 특성을 검사하는 것보다 빠른 특성검사가 이루어 질 수 있고 Analog Gage에 의한 시각에 의존한 측정이 아닌 정확한 센서의 이용으로 보다 신뢰성 있는 제품의 특성을 검출 할 수 있게 되었다.

개발배경

펌프는 사용되는 물의 압력을 높임으로써 생활에서 보다 편리하고 실용성 있는 물의 사용을 제공하는 역할을 한다. 특히 현 라인에서 검사하는 펌프의 경우 정해진 Spec에 의한 기성 펌프가 아닌 각 현장에서 소비자가 원하는 사양의 펌프를 제작하여 출하하므로 정확하고 철저한 내용의 검사 및 보고서가 없다면 이로 인한 손실은 제품자체의 출고에 영향을 미치며 제조사 이미지 손실에 대한 손해는 막대하다고 할 수 있다.

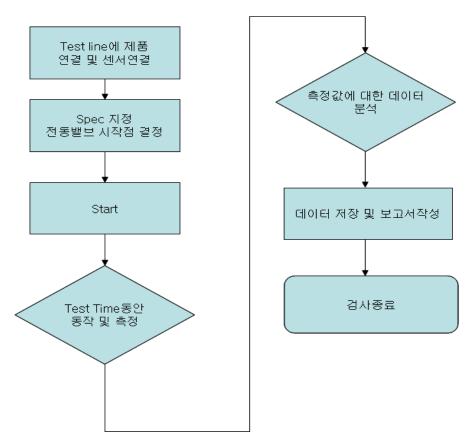
현 펌프의 기존 검사 방법은 작업자가 수동으로 밸브를 조정하여 사용자가 원하는 기준점을 측정하는 방식으로 많은 시간이 필요하며 Analog Gage에 의한 측정으로 보다 정확한 측정 및 보고서 작성이 필요하였다.

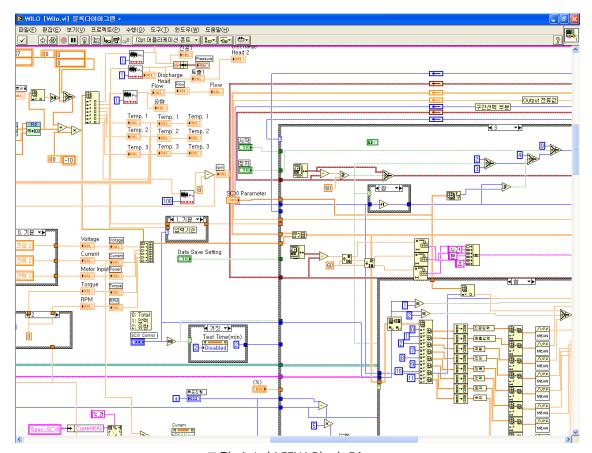

이로 인하여 당사와 관계사가 Hydraulic Pump Test System을 PC기반으로 개발하기로 하였다.

본론

펌프 테스트 라인의 구조

테스트라인은 11개의 테스트 라인으로 구성되어있다.


각 라인은 펌프의 종류 및 연결되는 파이프 구경에 따라 분류되어 있으며, 측정에 필요한 유량센서 및 토출 압력 센서, 흡입압력센서 가 연결되어있다.


- 그림 1. 펌프 테스트 라인의 구조 -

시험기의 구성도

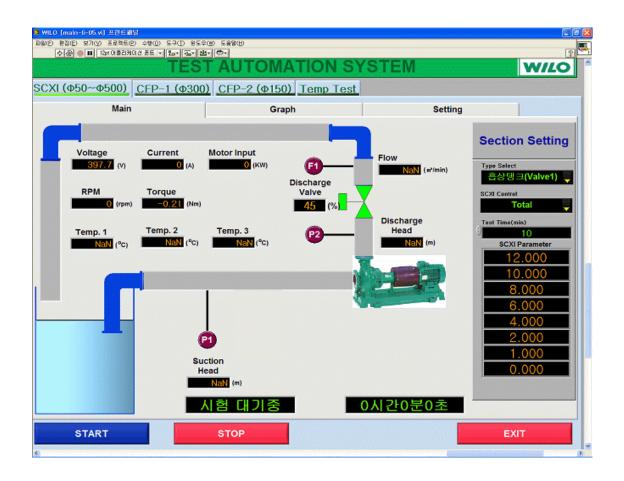
Hydraulic Pump Test System은 3개 라인의 펌프 테스트 및 별도의 온도측정 프로그램이 각 각 작동하게 되어있으며, Loop의 사용을 최소화하고, 프로그램의 수정이 용이하도록 State Machine을 사용하였다. 아래 그림은 전체적인 S/W 구성을 나타내며 그림은 LabVIEW Block Diagram을 부분적으로 나타내고 있다.


- 그림 2. Hydraulic Pump Test System 동작 FlowChart -

- 그림 4. LabVIEW Block Diagram-

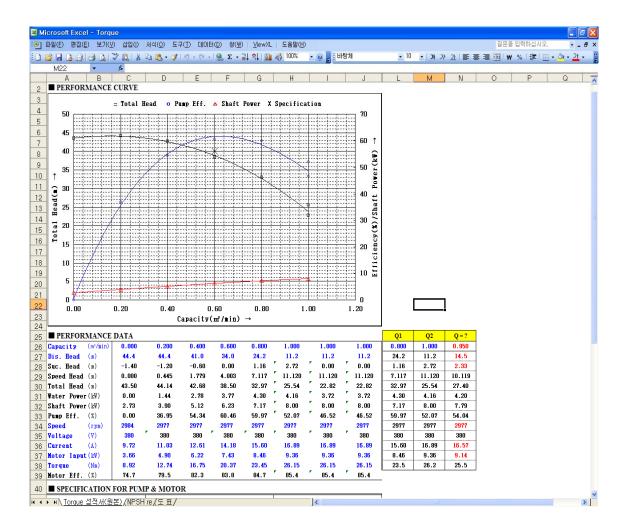
프런트패널

- Setting 부


각 채널에 연결된 센서의 출력에 대한 Physical값을 설정하며, Data의 저장여부, Report양식설정, 라인의 선택 및 연결된 Power Meter선택 등을 설정한다.

하단부에 존재하는 Specification for Pump & Motor 값은 보고서에 입력되는 펌프의 기본 사양으로 모델명 및 전력 등을 기입한다.

- 검사 메인 화면부


펌프는 테스트 라인에 연결 후 화면의 Start 버튼에 의한 모든 검사를 자동으로 수행하고 이에 대한 결과를 기존에 사용되는 양식의 보고서에 자동으로 입력 및 저장한다.

프로그램은 LabVIEW8.0을 사용하였고, 보고서 작성을 위하여 Report Generation Tool을 사용하였다.

- 1) 지정된 유량 점의 검출.
- 2) 지정된 Spec에서의 흡입 및 토출 압력.
- 3) 펌프에 사용되는 전압, 전류, 전력 측정.
- 4) 온도 센서에 의한 펌프 구동 시 온도측정.
- 5) rpm 및 Torque 측정.

저장 및 보고서 화면

측정한 유량 및 압력 등의 값에 의하여 보고서에 자동으로 기입되며 특성곡선의 그래프가 그려진다. 이와 같은 펌프의 특성을 나타내는 보고서는 3가지 종류가 있으며 모든 양식은 Setting창에 있는 보고서 선택부분에 의해 결정되고 작성된다.

결론

Hydraulic Pump Test System 구축함으로써

- 1) 공정운영 효율화
 - 작업자의 인력이 감소 됨으로써 효율적인 인력 운영이 가능해짐.
- 2) 효율적인 데이터 관리
 - 각 모델 별, 검사날짜 및 시간에 따른 데이터 저장으로 보다 안정적이고 체계적인 데이터 관리가 가능해짐.
- 3) 기업 이윤 증가
 - -신뢰할 수 있는 데이터의 측정으로 소비자의 제품에 대한 신뢰도를 높임으로써 기업이윤이 증가하게 됨.
- 4) 생산성 향상
 - 자동검사 시스템의 도입으로 동시에 3개 라인의 검사가 이루어 지므로 제품의 생산성이 향상됨.
- 5) 공정 운영 효율화
 - 검사공정 작업자의 인력 소요가 감소됨으로써 작업인력의 효율적인 운영이 가 능해짐

등의 직간접적인 효과가 발생하였으며, 금전적인 가치는 시스템 구현에 소요된 비용과 비교할 수 없을 정도로 크다. 당사와 관계사는 이 시스템을 현지의 공장에 설치하여 운영 중에 있다.